Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate
نویسندگان
چکیده
This work presents a combined experimental-numerical framework for the biomechanical characterization of highly hydrated collagen hydrogels, namely with 0.20, 0.30 and 0.40% (by weight) of collagen concentration. Collagen is the most abundant protein in the extracellular matrix of animals and humans. Its intrinsic biocompatibility makes collagen a promising substrate for embedding cells within a highly hydrated environment mimicking natural soft tissues. Cell behaviour is greatly influenced by the mechanical properties of the surrounding matrix, but the biomechanical characterization of collagen hydrogels has been challenging up to now, since they present non-linear poro-viscoelastic properties. Combining the stiffness outcomes from rheological experiments with relevant literature data on collagen permeability, poroelastic finite element (FE) models were developed. Comparison between experimental confined compression tests available in the literature and analogous FE stress relaxation curves showed a close agreement throughout the tests. This framework allowed establishing that the dynamic shear modulus of the collagen hydrogels is between 0.0097 ± 0.018 kPa for the 0.20% concentration and 0.0601 ± 0.044 kPa for the 0.40% concentration. The Poisson's ratio values for such conditions lie within the range of 0.495-0.485 for 0.20% and 0.480-0.470 for 0.40%, respectively, showing that rheology is sensitive enough to detect these small changes in collagen concentration and thus allowing to link rheology results with the confined compression tests. In conclusion, this integrated approach allows for accurate constitutive modelling of collagen hydrogels. This framework sets the grounds for the characterization of related hydrogels and to the use of this collagen parameterization in more complex multiscale models.
منابع مشابه
Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models
Hydrogels are used for 3D in vitro assays and tissue engineering and regeneration purposes. For a thorough interpretation of this technology, an integral biomechanical characterization of the materials is required. In this work, we characterize the mechanical and functional behavior of two specific hydrogels that play critical roles in wound healing, collagen and fibrin. A coherent and compleme...
متن کاملEvaluating the effect of pH on mechanical strength and cell compatibility of nanostructured collagen hydrogel by the plastic compression method
Objective(s): One of the main constraints of collagen hydrogel scaffolds for using in tissue engineering is mechanical weakness. Plastic compression (PC) is a physical method to overcome the mechanical limitation of collagen hydrogel. Materials and Methods: In this study, the effects of pH on mechanical and biological properties of PC hydrogels were investigated. Collagen hydrogels were fabrica...
متن کاملMechanically- and Chemically-Tunable Cell Culture System to Study Myofibroblast Phenotype
Cell culture systems for studying the combined effects of matrix proteins and mechanical forces on the behavior of soft tissue cells have not been well developed. Here, we describe a new biomimetic cell culture system that allows for the study of mixtures of matrix proteins while controlling mechanical stiffness in a range that is physiological for soft tissues. This system consists of layer-by...
متن کاملBiofabricated soft network composites for cartilage tissue engineering.
Articular cartilage from a material science point of view is a soft network composite that plays a critical role in load-bearing joints during dynamic loading. Its composite structure, consisting of a collagen fiber network and a hydrated proteoglycan matrix, gives rise to the complex mechanical properties of the tissue including viscoelasticity and stress relaxation. Melt electrospinning writi...
متن کاملSwelling behavior of nanoscale , shape - and size - specific , hydrogel particles fabricated using imprint lithography †
Recently a number of hydrogel-based microand nanoscale drug carriers have been reported including top down fabricated, highly monodisperse nanoparticles of specific sizes and shapes. One critical question on such approaches is whether in vivo swelling of the nanoparticles could considerably alter their geometry to a point where the potential benefit of controlling size or shape could not be rea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 27 شماره
صفحات -
تاریخ انتشار 2016